Insulin-induced actin filament remodeling colocalizes actin with phosphatidylinositol 3-kinase and GLUT4 in L6 myotubes.

نویسندگان

  • Z A Khayat
  • P Tong
  • K Yaworsky
  • R J Bloch
  • A Klip
چکیده

We examined the temporal reorganization of actin microfilaments by insulin and its participation in the localization of signaling molecules and glucose transporters in L6 myotubes expressing myc-tagged glucose transporter 4 (GLUT4myc). Scanning electron microscopy revealed a dynamic distortion of the dorsal cell surface (membrane ruffles) upon insulin treatment. In unstimulated cells, phalloidin-labeled actin filaments ran parallel to the longitudinal axis of the cell. Immunostaining of the p85 regulatory subunit of phosphatidylinositol 3-kinase was diffusely punctate, and GLUT4myc was perinuclear. After 3 minutes of insulin treatment, actin reorganized to form structures; these structures protruded from the dorsal surface of the myotubes by 10 minutes and condensed in the myoplasm into less prominent foci at 30 minutes. The p85 polypeptide colocalized with these structures at all time points. Actin remodeling and p85 relocalization to actin structures were prevented by cytochalasin D or latrunculin B. GLUT4myc recruitment into the actin-rich projections was also observed, but only after 10 minutes of insulin treatment. Irrespective of insulin stimulation, the majority of p85 and a portion (45%) of GLUT4 were recovered in the Triton X-100-insoluble material that was also enriched with actin. In contrast, vp165, a transmembrane aminopeptidase that morphologically colocalized with GLUT4 vesicles, was fully soluble in Triton X-100 extracts of both insulin-treated and control myotubes. Transient transfection of dominant inhibitory Rac1 (N17) into L6 myotubes prevented formation of dorsal actin structures and blocked insulin-induced GLUT4myc translocation to the cell surface. We propose that insulin-dependent formation of actin structures facilitates the association of PI3-K (p85) with GLUT4 vesicles and, potentially, the arrival of GLUT4 at the cell surface.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ceramide- and oxidant-induced insulin resistance involve loss of insulin-dependent Rac-activation and actin remodeling in muscle cells.

In muscle cells, insulin elicits recruitment of the glucose transporter GLUT4 to the plasma membrane. This process engages sequential signaling from insulin receptor substrate (IRS)-1 to phosphatidylinositol (PI) 3-kinase and the serine/threonine kinase Akt. GLUT4 translocation also requires an Akt-independent but PI 3-kinase-and Rac-dependent remodeling of filamentous actin. Although IRS-1 pho...

متن کامل

Insulin-induced cortical actin remodeling promotes GLUT4 insertion at muscle cell membrane ruffles.

Insulin stimulates glucose uptake by recruiting glucose transporter 4 (GLUT4) from an intracellular compartment to the cell surface; this phenomenon is defective in type 2 diabetes. Here we examine the involvement of actin filaments in GLUT4 translocation and their possible defects in insulin resistance, using L6 myotubes expressing myc-tagged GLUT4. Insulin caused membrane ruffling, a dynamic ...

متن کامل

Disassembly of the actin network inhibits insulin-dependent stimulation of glucose transport and prevents recruitment of glucose transporters to the plasma membrane.

In muscle and fat tissues, insulin stimulates glucose transport through the translocation of glucose transporter proteins from an intracellular storage pool to the plasma membrane. The mechanism of this translocation is unknown. We have examined the possible role of the actin microfilament network in the stimulation of glucose transport by insulin and on the distribution of glucose transporters...

متن کامل

Nexilin, a Cardiomyopathy-Associated F-Actin Binding Protein, Binds and Regulates IRS1 Signaling in Skeletal Muscle Cells

Insulin stimulates glucose uptake through a highly organized and complex process that involves movement of the glucose transporter 4 (GLUT4) from intracellular storage sites to the plasma membrane. Previous studies in L6 skeletal muscle cells have shown that insulin-induced activation and assembly of insulin receptor substrate 1 (IRS1) and p85α the regulatory subunit of the Type 1A phosphatidyl...

متن کامل

Insulin but not PDGF relies on actin remodeling and on VAMP2 for GLUT4 translocation in myoblasts.

Insulin promotes the translocation of glucose transporter 4 (GLUT4) from intracellular pools to the surface of muscle and fat cells via a mechanism dependent on phosphatidylinositol (PtdIns) 3-kinase, actin cytoskeletal remodeling and the v-SNARE VAMP2. The growth factor PDGF-BB also robustly activates PtdIns 3-kinase and induces actin remodeling, raising the question of whether it uses similar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cell science

دوره 113 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2000